Keyword Search Result

[Keyword] support vector machine(103hit)

21-40hit(103hit)

  • Mutual Kernel Matrix Completion

    Rachelle RIVERO  Richard LEMENCE  Tsuyoshi KATO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/05/17
      Vol:
    E100-D No:8
      Page(s):
    1844-1851

    With the huge influx of various data nowadays, extracting knowledge from them has become an interesting but tedious task among data scientists, particularly when the data come in heterogeneous form and have missing information. Many data completion techniques had been introduced, especially in the advent of kernel methods — a way in which one can represent heterogeneous data sets into a single form: as kernel matrices. However, among the many data completion techniques available in the literature, studies about mutually completing several incomplete kernel matrices have not been given much attention yet. In this paper, we present a new method, called Mutual Kernel Matrix Completion (MKMC) algorithm, that tackles this problem of mutually inferring the missing entries of multiple kernel matrices by combining the notions of data fusion and kernel matrix completion, applied on biological data sets to be used for classification task. We first introduced an objective function that will be minimized by exploiting the EM algorithm, which in turn results to an estimate of the missing entries of the kernel matrices involved. The completed kernel matrices are then combined to produce a model matrix that can be used to further improve the obtained estimates. An interesting result of our study is that the E-step and the M-step are given in closed form, which makes our algorithm efficient in terms of time and memory. After completion, the (completed) kernel matrices are then used to train an SVM classifier to test how well the relationships among the entries are preserved. Our empirical results show that the proposed algorithm bested the traditional completion techniques in preserving the relationships among the data points, and in accurately recovering the missing kernel matrix entries. By far, MKMC offers a promising solution to the problem of mutual estimation of a number of relevant incomplete kernel matrices.

  • Multi-View 3D CG Image Quality Assessment for Contrast Enhancement Based on S-CIELAB Color Space

    Norifumi KAWABATA  Masaru MIYAO  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2017/03/28
      Vol:
    E100-D No:7
      Page(s):
    1448-1462

    Previously, it is not obvious to what extent was accepted for the assessors when we see the 3D image (including multi-view 3D) which the luminance change may affect the stereoscopic effect and assessment generally. We think that we can conduct a general evaluation, along with a subjective evaluation, of the luminance component using both the S-CIELAB color space and CIEDE2000. In this study, first, we performed three types of subjective evaluation experiments for contrast enhancement in an image by using the eight viewpoints parallax barrier method. Next, we analyzed the results statistically by using a support vector machine (SVM). Further, we objectively evaluated the luminance value measurement by using CIEDE2000 in the S-CIELAB color space. Then, we checked whether the objective evaluation value was related to the subjective evaluation value. From results, we were able to see the characteristic relationship between subjective assessment and objective assessment.

  • A Hardware-Trojan Classification Method Using Machine Learning at Gate-Level Netlists Based on Trojan Features

    Kento HASEGAWA  Masao YANAGISAWA  Nozomu TOGAWA  

     
    PAPER

      Vol:
    E100-A No:7
      Page(s):
    1427-1438

    Due to the increase of outsourcing by IC vendors, we face a serious risk that malicious third-party vendors insert hardware Trojans very easily into their IC products. However, detecting hardware Trojans is very difficult because today's ICs are huge and complex. In this paper, we propose a hardware-Trojan classification method for gate-level netlists to identify hardware-Trojan infected nets (or Trojan nets) using a support vector machine (SVM) or a neural network (NN). At first, we extract the five hardware-Trojan features from each net in a netlist. These feature values are complicated so that we cannot give the simple and fixed threshold values to them. Hence we secondly represent them to be a five-dimensional vector and learn them by using SVM or NN. Finally, we can successfully classify all the nets in an unknown netlist into Trojan ones and normal ones based on the learned classifiers. We have applied our machine-learning-based hardware-Trojan classification method to Trust-HUB benchmarks. The results demonstrate that our method increases the true positive rate compared to the existing state-of-the-art results in most of the cases. In some cases, our method can achieve the true positive rate of 100%, which shows that all the Trojan nets in an unknown netlist are completely detected by our method.

  • Personalized Movie Recommendation System Based on Support Vector Machine and Improved Particle Swarm Optimization

    Xibin WANG  Fengji LUO  Chunyan SANG  Jun ZENG  Sachio HIROKAWA  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2016/11/21
      Vol:
    E100-D No:2
      Page(s):
    285-293

    With the rapid development of information and Web technologies, people are facing ‘information overload’ in their daily lives. The personalized recommendation system (PRS) is an effective tool to assist users extract meaningful information from the big data. Collaborative filtering (CF) is one of the most widely used personalized recommendation techniques to recommend the personalized products for users. However, the conventional CF technique has some limitations, such as the low accuracy of of similarity calculation, cold start problem, etc. In this paper, a PRS model based on the Support Vector Machine (SVM) is proposed. The proposed model not only considers the items' content information, but also the users' demographic and behavior information to fully capture the users' interests and preferences. An improved Particle Swarm Optimization (PSO) algorithm is also proposed to improve the performance of the model. The efficiency of the proposed method is verified by multiple benchmark datasets.

  • A Deep Neural Network Based Quasi-Linear Kernel for Support Vector Machines

    Weite LI  Bo ZHOU  Benhui CHEN  Jinglu HU  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E99-A No:12
      Page(s):
    2558-2565

    This paper proposes a deep quasi-linear kernel for support vector machines (SVMs). The deep quasi-linear kernel can be constructed by using a pre-trained deep neural network. To realize this goal, a multilayer gated bilinear classifier is first designed to mimic the functionality of the pre-trained deep neural network, by generating the gate control signals using the deep neural network. Then, a deep quasi-linear kernel is derived by applying an SVM formulation to the multilayer gated bilinear classifier. In this way, we are able to further implicitly optimize the parameters of the multilayer gated bilinear classifier, which are a set of duplicate but independent parameters of the pre-trained deep neural network, by using an SVM optimization. Experimental results on different data sets show that SVMs with the proposed deep quasi-linear kernel have an ability to take advantage of the pre-trained deep neural networks and outperform SVMs with RBF kernels.

  • Optimum Nonlinear Discriminant Analysis and Discriminant Kernel Support Vector Machine

    Akinori HIDAKA  Takio KURITA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2016/08/04
      Vol:
    E99-D No:11
      Page(s):
    2734-2744

    Kernel discriminant analysis (KDA) is the mainstream approach of nonlinear discriminant analysis (NDA). Since it uses the kernel trick, KDA does not consider its nonlinear discriminant mapping explicitly. In this paper, another NDA approach where the nonlinear discriminant mapping is analytically given is developed. This study is based on the theory of optimal nonlinear discriminant analysis (ONDA) of which the nonlinear mapping is exactly expressed by using the Bayesian posterior probability. This theory indicates that various NDA can be derived by estimating the Bayesian posterior probability in ONDA with various estimation methods. Also, ONDA brings an insight about novel kernel functions, called discriminant kernel (DK), which is defined by also using the posterior probabilities. In this paper, several NDA and DK derived from ONDA with several posterior probability estimators are developed and evaluated. Given fine estimation methods of the Bayesian posterior probability, they give good discriminant spaces for visualization or classification.

  • Spoken Term Detection Using SVM-Based Classifier Trained with Pre-Indexed Keywords

    Kentaro DOMOTO  Takehito UTSURO  Naoki SAWADA  Hiromitsu NISHIZAKI  

     
    PAPER-Spoken term detection

      Pubricized:
    2016/07/19
      Vol:
    E99-D No:10
      Page(s):
    2528-2538

    This study presents a two-stage spoken term detection (STD) method that uses the same STD engine twice and a support vector machine (SVM)-based classifier to verify detected terms from the STD engine's output. In a front-end process, the STD engine is used to pre-index target spoken documents from a keyword list built from an automatic speech recognition result. The STD result includes a set of keywords and their detection intervals (positions) in the spoken documents. For keywords having competitive intervals, we rank them based on the STD matching cost and select the one having the longest duration among competitive detections. The selected keywords are registered in the pre-index. They are then used to train an SVM-based classifier. In a query term search process, a query term is searched by the same STD engine, and the output candidates are verified by the SVM-based classifier. Our proposed two-stage STD method with pre-indexing was evaluated using the NTCIR-10 SpokenDoc-2 STD task and it drastically outperformed the traditional STD method based on dynamic time warping and a confusion network-based index.

  • Learning Subspace Classification Using Subset Approximated Kernel Principal Component Analysis

    Yoshikazu WASHIZAWA  

     
    PAPER-Pattern Recognition

      Pubricized:
    2016/01/25
      Vol:
    E99-D No:5
      Page(s):
    1353-1363

    We propose a kernel-based quadratic classification method based on kernel principal component analysis (KPCA). Subspace methods have been widely used for multiclass classification problems, and they have been extended by the kernel trick. However, there are large computational complexities for the subspace methods that use the kernel trick because the problems are defined in the space spanned by all of the training samples. To reduce the computational complexity of the subspace methods for multiclass classification problems, we extend Oja's averaged learning subspace method and apply a subset approximation of KPCA. We also propose an efficient method for selecting the basis vectors for this. Due to these extensions, for many problems, our classification method exhibits a higher classification accuracy with fewer basis vectors than does the support vector machine (SVM) or conventional subspace methods.

  • A Salient Feature Extraction Algorithm for Speech Emotion Recognition

    Ruiyu LIANG  Huawei TAO  Guichen TANG  Qingyun WANG  Li ZHAO  

     
    LETTER-Speech and Hearing

      Pubricized:
    2015/05/29
      Vol:
    E98-D No:9
      Page(s):
    1715-1718

    A salient feature extraction algorithm is proposed to improve the recognition rate of the speech emotion. Firstly, the spectrogram of the emotional speech is calculated. Secondly, imitating the selective attention mechanism, the color, direction and brightness map of the spectrogram is computed. Each map is normalized and down-sampled to form the low resolution feature matrix. Then, each feature matrix is converted to the row vector and the principal component analysis (PCA) is used to reduce features redundancy to make the subsequent classification algorithm more practical. Finally, the speech emotion is classified with the support vector machine. Compared with the tradition features, the improved recognition rate reaches 15%.

  • 3D CG Image Quality Metrics by Regions with 8 Viewpoints Parallax Barrier Method

    Norifumi KAWABATA  Masaru MIYAO  

     
    PAPER

      Vol:
    E98-A No:8
      Page(s):
    1696-1708

    Many previous studies on image quality assessment of 3D still images or video clips have been conducted. In particular, it is important to know the region in which assessors are interested or on which they focus in images or video clips, as represented by the ROI (Region of Interest). For multi-view 3D images, it is obvious that there are a number of viewpoints; however, it is not clear whether assessors focus on objects or background regions. It is also not clear on what assessors focus depending on whether the background region is colored or gray scale. Furthermore, while case studies on coded degradation in 2D or binocular stereoscopic videos have been conducted, no such case studies on multi-view 3D videos exist, and therefore, no results are available for coded degradation according to the object or background region in multi-view 3D images. In addition, in the case where the background region is gray scale or not, it was not revealed that there were affection for gaze point environment of assessors and subjective image quality. In this study, we conducted experiments on the subjective evaluation of the assessor in the case of coded degradation by JPEG coding of the background or object or both in 3D CG images using an eight viewpoint parallax barrier method. Then, we analyzed the results statistically and classified the evaluation scores using an SVM.

  • Human Detection Method Based on Non-Redundant Gradient Semantic Local Binary Patterns

    Jiu XU  Ning JIANG  Wenxin YU  Heming SUN  Satoshi GOTO  

     
    PAPER

      Vol:
    E98-A No:8
      Page(s):
    1735-1742

    In this paper, a feature named Non-Redundant Gradient Semantic Local Binary Patterns (NRGSLBP) is proposed for human detection as a modified version of the conventional Semantic Local Binary Patterns (SLBP). Calculations of this feature are performed for both intensity and gradient magnitude image so that texture and gradient information are combined. Moreover, and to the best of our knowledge, non-redundant patterns are adopted on SLBP for the first time, allowing better discrimination. Compared with SLBP, no additional cost of the feature dimensions of NRGSLBP is necessary, and the calculation complexity is considerably smaller than that of other features. Experimental results on several datasets show that the detection rate of our proposed feature outperforms those of other features such as Histogram of Orientated Gradient (HOG), Histogram of Templates (HOT), Bidirectional Local Template Patterns (BLTP), Gradient Local Binary Patterns (GLBP), SLBP and Covariance matrix (COV).

  • Automatic Detection of the Carotid Artery Location from Volumetric Ultrasound Images Using Anatomical Position-Dependent LBP Features

    Fumi KAWAI  Satoshi KONDO  Keisuke HAYATA  Jun OHMIYA  Kiyoko ISHIKAWA  Masahiro YAMAMOTO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2015/04/13
      Vol:
    E98-D No:7
      Page(s):
    1353-1364

    We propose a fully automatic method for detecting the carotid artery from volumetric ultrasound images as a preprocessing stage for building three-dimensional images of the structure of the carotid artery. The proposed detector utilizes support vector machine classifiers to discriminate between carotid artery images and non-carotid artery images using two kinds of LBP-based features. The detector switches between these features depending on the anatomical position along the carotid artery. We evaluate our proposed method using actual clinical cases. Accuracies of detection are 100%, 87.5% and 68.8% for the common carotid artery, internal carotid artery, and external carotid artery sections, respectively.

  • Backchannel Prediction for Mandarin Human-Computer Interaction

    Xia MAO  Yiping PENG  Yuli XUE  Na LUO  Alberto ROVETTA  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2015/03/02
      Vol:
    E98-D No:6
      Page(s):
    1228-1237

    In recent years, researchers have tried to create unhindered human-computer interaction by giving virtual agents human-like conversational skills. Predicting backchannel feedback for agent listeners has become a novel research hot-spot. The main goal of this paper is to identify appropriate features and methods for backchannel prediction in Mandarin conversations. Firstly, multimodal Mandarin conversations are recorded for the analysis of backchannel behaviors. In order to eliminate individual difference in the original face-to-face conversations, more backchannels from different listeners are gathered together. These data confirm that backchannels occurring in the speakers' pauses form a vast majority in Mandarin conversations. Both prosodic and visual features are used in backchannel prediction. Four types of models based on the speakers' pauses are built by using support vector machine classifiers. An evaluation of the pause-based prediction model has shown relatively high accuracy in consideration of the optional nature of backchannel feedback. Finally, the results of the subjective evaluation validate that the conversations performed between humans and virtual listeners using backchannels predicted by the proposed models is more unhindered compared to other backchannel prediction methods.

  • Predicting Vectorization Profitability Using Binary Classification

    Antoine TROUVÉ  Arnaldo J. CRUZ  Dhouha BEN BRAHIM  Hiroki FUKUYAMA  Kazuaki J. MURAKAMI  Hadrien CLARKE  Masaki ARAI  Tadashi NAKAHIRA  Eiji YAMANAKA  

     
    PAPER-Software System

      Pubricized:
    2014/08/27
      Vol:
    E97-D No:12
      Page(s):
    3124-3132

    Basic block vectorization consists in realizing instruction-level parallelism inside basic blocks in order to generate SIMD instructions and thus speedup data processing. It is however problematic, because the vectorized program may actually be slower than the original one. Therefore, it would be useful to predict beforehand whether or not vectorization will actually produce any speedup. This paper proposes to do so by expressing vectorization profitability as a classification problem, and by predicting it using a machine learning technique called support vector machine (SVM). It considers three compilers (icc, gcc and llvm), and a benchmark suite made of 151 loops, unrolled with factors ranging from 1 to 20. The paper further proposes a technique that combines the results of two SVMs to reach 99% of accuracy for all three compilers. Moreover, by correctly predicting unprofitable vectorizations, the technique presented in this paper provides speedups of up to 2.16 times, 2.47 times and 3.83 times for icc, gcc and LLVM, respectively (9%, 18% and 56% on average). It also lowers to less than 1% the probability of the compiler generating a slower program with vectorization turned on (from more than 25% for the compilers alone).

  • Unsupervised Learning Model for Real-Time Anomaly Detection in Computer Networks

    Kriangkrai LIMTHONG  Kensuke FUKUDA  Yusheng JI  Shigeki YAMADA  

     
    PAPER-Information Network

      Vol:
    E97-D No:8
      Page(s):
    2084-2094

    Detecting a variety of anomalies caused by attacks or accidents in computer networks has been one of the real challenges for both researchers and network operators. An effective technique that could quickly and accurately detect a wide range of anomalies would be able to prevent serious consequences for system security or reliability. In this article, we characterize detection techniques on the basis of learning models and propose an unsupervised learning model for real-time anomaly detection in computer networks. We also conducted a series of experiments to examine capabilities of the proposed model by employing three well-known machine learning algorithms, namely multivariate normal distribution, k-nearest neighbor, and one-class support vector machine. The results of these experiments on real network traffic suggest that the proposed model is a promising solution and has a number of flexible capabilities to detect several types of anomalies in real time.

  • Mean Polynomial Kernel and Its Application to Vector Sequence Recognition

    Raissa RELATOR  Yoshihiro HIROHASHI  Eisuke ITO  Tsuyoshi KATO  

     
    PAPER-Pattern Recognition

      Vol:
    E97-D No:7
      Page(s):
    1855-1863

    Classification tasks in computer vision and brain-computer interface research have presented several applications such as biometrics and cognitive training. However, like in any other discipline, determining suitable representation of data has been challenging, and recent approaches have deviated from the familiar form of one vector for each data sample. This paper considers a kernel between vector sets, the mean polynomial kernel, motivated by recent studies where data are approximated by linear subspaces, in particular, methods that were formulated on Grassmann manifolds. This kernel takes a more general approach given that it can also support input data that can be modeled as a vector sequence, and not necessarily requiring it to be a linear subspace. We discuss how the kernel can be associated with the Projection kernel, a Grassmann kernel. Experimental results using face image sequences and physiological signal data show that the mean polynomial kernel surpasses existing subspace-based methods on Grassmann manifolds in terms of predictive performance and efficiency.

  • A Novel Technique for Duplicate Detection and Classification of Bug Reports

    Tao ZHANG  Byungjeong LEE  

     
    PAPER-Software Engineering

      Vol:
    E97-D No:7
      Page(s):
    1756-1768

    Software products are increasingly complex, so it is becoming more difficult to find and correct bugs in large programs. Software developers rely on bug reports to fix bugs; thus, bug-tracking tools have been introduced to allow developers to upload, manage, and comment on bug reports to guide corrective software maintenance. However, the very high frequency of duplicate bug reports means that the triagers who help software developers in eliminating bugs must allocate large amounts of time and effort to the identification and analysis of these bug reports. In addition, classifying bug reports can help triagers arrange bugs in categories for the fixers who have more experience for resolving historical bugs in the same category. Unfortunately, due to a large number of submitted bug reports every day, the manual classification for these bug reports increases the triagers' workload. To resolve these problems, in this study, we develop a novel technique for automatic duplicate detection and classification of bug reports, which reduces the time and effort consumed by triagers for bug fixing. Our novel technique uses a support vector machine to check whether a new bug report is a duplicate. The concept profile is also used to classify the bug reports into related categories in a taxonomic tree. Finally, we conduct experiments that demonstrate the feasibility of our proposed approach using bug reports extracted from the large-scale open source project Mozilla.

  • Accurate Image Separation Method for Two Closely Spaced Pedestrians Using UWB Doppler Imaging Radar and Supervised Learning

    Kenshi SAHO  Hiroaki HOMMA  Takuya SAKAMOTO  Toru SATO  Kenichi INOUE  Takeshi FUKUDA  

     
    PAPER-Sensing

      Vol:
    E97-B No:6
      Page(s):
    1223-1233

    Recent studies have focused on developing security systems using micro-Doppler radars to detect human bodies. However, the resolution of these conventional methods is unsuitable for identifying bodies and moreover, most of these conventional methods were designed for a solitary or sufficiently well-spaced targets. This paper proposes a solution to these problems with an image separation method for two closely spaced pedestrian targets. The proposed method first develops an image of the targets using ultra-wide-band (UWB) Doppler imaging radar. Next, the targets in the image are separated using a supervised learning-based separation method trained on a data set extracted using a range profile. We experimentally evaluated the performance of the image separation using some representative supervised separation methods and selected the most appropriate method. Finally, we reject false points caused by target interference based on the separation result. The experiment, assuming two pedestrians with a body separation of 0.44m, shows that our method accurately separates their images using a UWB Doppler radar with a nominal down-range resolution of 0.3m. We describe applications using various target positions, establish the performance, and derive optimal settings for our method.

  • Multiple Kernel Learning for Quadratically Constrained MAP Classification

    Yoshikazu WASHIZAWA  Tatsuya YOKOTA  Yukihiko YAMASHITA  

     
    LETTER-Fundamentals of Information Systems

      Vol:
    E97-D No:5
      Page(s):
    1340-1344

    Most of the recent classification methods require tuning of the hyper-parameters, such as the kernel function parameter and the regularization parameter. Cross-validation or the leave-one-out method is often used for the tuning, however their computational costs are much higher than that of obtaining a classifier. Quadratically constrained maximum a posteriori (QCMAP) classifiers, which are based on the Bayes classification rule, do not have the regularization parameter, and exhibit higher classification accuracy than support vector machine (SVM). In this paper, we propose a multiple kernel learning (MKL) for QCMAP to tune the kernel parameter automatically and improve the classification performance. By introducing MKL, QCMAP has no parameter to be tuned. Experiments show that the proposed classifier has comparable or higher classification performance than conventional MKL classifiers.

  • Security Evaluation of RG-DTM PUF Using Machine Learning Attacks

    Mitsuru SHIOZAKI  Kousuke OGAWA  Kota FURUHASHI  Takahiko MURAYAMA  Masaya YOSHIKAWA  Takeshi FUJINO  

     
    PAPER-Hardware Based Security

      Vol:
    E97-A No:1
      Page(s):
    275-283

    In modern hardware security applications, silicon physical unclonable functions (PUFs) are of interest for their potential use as a unique identity or secret key that is generated from inherent characteristics caused by process variations. However, arbiter-based PUFs utilizing the relative delay-time difference between equivalent paths have a security issue in which the generated challenge-response pairs (CRPs) can be predicted by a machine learning attack. We previously proposed the RG-DTM PUF, in which a response is decided from divided time domains allocated to response 0 or 1, to improve the uniqueness of the conventional arbiter-PUF in a small circuit. However, its resistance against machine learning attacks has not yet been studied. In this paper, we evaluate the resistance against machine learning attacks by using a support vector machine (SVM) and logistic regression (LR) in both simulations and measurements and compare the RG-DTM PUF with the conventional arbiter-PUF and with the XOR arbiter-PUF, which strengthens the resistance by using XORing output from multiple arbiter-PUFs. In numerical simulations, prediction rates using both SVM and LR were above 90% within 1,000 training CRPs on the arbiter-PUF. The machine learning attack using the SVM could never predict responses on the XOR arbiter-PUF with over six arbiter-PUFs, whereas the prediction rate eventually reached 95% using the LR and many training CRPs. On the RG-DTM PUF, when the division number of the time domains was over eight, the prediction rates using the SVM were equal to the probability by guess. The machine learning attack using LR has the potential to predict responses, although an adversary would need to steal a significant amount of CRPs. However, the resistance can exponentially be strengthened with an increase in the division number, just like with the XOR arbiter-PUF. Over one million CRPs are required to attack the 16-divided RG-DTM PUF. Differences between the RG-DTM PUF and the XOR arbiter-PUF relate to the area penalty and the power penalty. Specifically, the XOR arbiter-PUF has to make up for resistance against machine learning attacks by increasing the circuit area, while the RG-DTM PUF is resistant against machine learning attacks with less area penalty and power penalty since only capacitors are added to the conventional arbiter-PUF. We also attacked RG-DTM PUF chips, which were fabricated with 0.18-µm CMOS technology, to evaluate the effect of physical variations and unstable responses. The resistance against machine learning attacks was related to the delay-time difference distribution, but unstable responses had little influence on the attack results.

21-40hit(103hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.